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This note considers the reputation phenomenon in the context of the Chain-Store Paradox.
Two major aspects of the perfect information assumption are relaxed: potential entrants do
not know the ordering in which they have to make their entry decisions and they do not
have full knowledge of the past history of the market. It is shown that, without introducing
private information or changing the nature of the conflict, there exist sequential equilibria of
the game with imperfect information in which the monopolist is willing to build reputation.
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1. INTRODUCTION

The main purpose of this note is to present several examples illustrating the
difficulty of modeling reputation in a game-theoretic context. It is easy to think
of economic situations in which reputation (in its everyday meaning) may play
an important role in explaining rational behavior: somebody, Mr.M , is willing to
incur losses today to influence the future actions of somebody else by changing
his beliefs about Mr.M ’s future actions. However, it has proven difficult to model
such phenomena in finite horizon models.

This is by no means a new problem in economics. One of the best known
examples in which one would think that reputation could emerge at equilibrium is
the Chain-Store Paradox: A monopolist(M) faces a set of potential competitors
(E1, . . . , ET ) deciding sequentially whether or not to enter the market. If a
potential entrantEn decides to stay out(O) he receives a payoff of zero and
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FIGURE 1

M receives a payoff ofa > 0. If En decides to enter(I ), payoffs depend on
M ′s response; ifM fights the entrant(F), En and M received < 0 and−1,
respectively; ifM acquiesces(A), En andM receiveb > 0 and−1 < c < a,
respectively (see Fig. 1).

Moreover, the description of the conflict and the rationality of all the firms are
supposed to be common knowledge.

As Selten (1978) pointed out, even though it is a Nash equilibrium for every
potential entrant to stay out and for the monopolist to fight each one of them, it is
not a very sensible one1 since the decision of the last potential entrant(ET ) to stay
out can be rationalized only if he believes that the monopolist is going to carry
out a non optimal decision in the last period. Hence, in any sensible equilibrium,
ET should decide to enter (independently of what happened previously) andM
should playA. Knowing this, the potential entrantET−1 has to decide to enter,
since his action and the answer ofM at periodT − 1 will not have any effect
on the last period decisions and therefore, using a similar argument to that for
ET , he also knows that his decision to enter the market has to be answered with
A. This argument can be carried out for all potential entrants, implying that the
unique sensible (or subgame-perfect) equilibrium is the one in which all potential
entrants decide to enter and the monopolist never fights. This example has been
called the Chain-Store Paradox precisely because, even though it seems intuitive

1 It is not a subgame-perfect equilibrium. See Selten (1975) and (1978).
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that the monopolist can deter entrants by being prepared to build a reputation
for fighting, this does not survive the perfectness criterion.

Although the argument above ruling out any reputation equilibrium (aT + 1-
tuple of strategies such that there is at least one period in which the monopolist
is willing to respond to an entry by fighting) seems robust to alternative spec-
ifications of the game (at least as long as the number of potential entrants is
kept finite), Kreps and Wilson (1982a) and Milgrom and Roberts (1982) showed
in related papers that this is not so. They argue, and I think in a sensible way,
that the complete information assumption in the Chain-Store Paradox is more a
modeling artifact than a good representation of real situations. It is easy to think
that potential entrants are in fact uncertain about the monopolist’s payoffs. Para-
phrasing Kreps and Wilson (1982a), suppose that for whatever reason, potential
entrants assess some positive probabilityδ that the monopolist’s payoffs after
an “in” decision by the entrant are not as in Fig. 1 (weak monopolist), but rather
they are−1 if the monopolist’s answer isA, or 0 if the monopolist’s answer isF ,
reflecting a short-term benefit from a fighting response. In the latter case we say
that the monopolist is strong. Using Harsanyi’s (1967–1968) way of transform-
ing a game of incomplete information into a game of imperfect information, they
show that for all values ofb ∈ (0, 1) andδ ∈ (0, 1) there is a sequential equi-
librium (see Kreps and Wilson, 1982b) in which the strong monopolist always
fights and the weak monopolist fights with positive probability at early stages
of the game, i.e., the weak monopolist acquiesces in only a limited number of
final periods. Therefore, even though the information may be almost complete,
i.e.,δ may be very small, the reputation effect comes alive. Moreover, they also
show that in general (δ 6= bn for 0 < b < 1 and 1≤ n ≤ T) the equilibrium is
unique if one restricts the beliefs of the entrants to satisfy a natural and intuitive
restriction.2

One might be tempted to conclude that the existence of the slightest uncertainty
about payoffs allows us to explain reputation as an equilibrium phenomenon
and therefore that this resolves the paradox. Nevertheless, as Kreps and Wilson
themselves suspected, “By cleverly choosing the nature of that small uncertainty
(precisely—its support), one can get out of a game-theoretic analysis whatever
one wishes.”3 Furthermore, one might have some doubts about considering the
game of incomplete information as a game somehow “close” to the original game
even for small amounts of uncertainty (δ close to zero).

Here I would like to argue that there are other basic features of the perfect
information assumption in the model of the Chain-Store Paradox which preclude

2 The beliefs of the entrants are called plausible if given two historiesht andh′t of play up to stage
t , if the monopolist was more aggressive in historyht than in historyh′t , that is, if some plays ofF in
ht becomeA plays inh′t , then the revised probability that the monopolist is strong afterht can not be
smaller than afterh′t .

3 See Fudenberg and Maskin (1986) for a related statement and proof of these suspicions.
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(by the backwards induction argument) sensible reputation equilibria and, fur-
thermore, that these features may not be a good representation of real situations.
I am thinking of two interrelated aspects of the perfect-information assumption.
The first aspect is that before making his decision, a potential entrantEn (n > 1)
is assumed to have full knowledge of the history of the game up to periodn−1;
in particular, he is assumed to be able to observe that, for instance, entrantEn−1

has decided to stay out of the market. The second aspect is that not only do the
potential entrants know how many firms are considering the possibility of enter-
ing the market, but also the order in which they will make their decisions. Let
us suppose for a moment that potential entrants are uncertain about the ordering
in which they have to make the “enter” or “out” decision and moreover, they
are unable to observe the others’ “out” decisions. Then, when a potential entrant
is considering his decision after observing that so far no firm has entered the
market, he may still be unsure whether he is the first one considering the possi-
bility of entering or perhaps he is the last one but everybody else has decided to
stay out. I think that this description of the game, with imperfect—rather than
incomplete—information prior to the entry decision may represent more accu-
rately the context of real situations. This approach requires neither incomplete
information nor changing the structure of the game in a radical way. Moreover,
there is something unnatural about assuming that agents can distinguish between
those firms that have not yet decided whether to enter the market or not and those
that havealreadydecidednot to enter.

Notice that, to achieve uncertainty in the environment, these two aspects must
be present together, because uncertainty on the ordering but full knowledge of
the past history would generate a situation in which every potential entrantEn

knows with probability one that he is in fact thet th potential entrant. In other
words, if the potential entrant knows the full historyh, he can infer, by just
looking the length ofh, sayt − 1, that he is thet th potential entrant. Then the
backwards induction argument made at the beginning of this section would still
apply, upsetting any possibility of observing reputation at equilibrium. Also,
Appendix B in Milgrom and Roberts (1982) shows an example illustrating their
claim regarding the role of lack of common knowledge in generating predation.
They say that “as soon as the complete information assumption on the game is
relaxed, so that the common knowledge condition no longer obtains, the logic
of the backward induction breaks down.”

In this note, I want to investigate whether these imperfect information modifi-
cations of the Chain-Store Paradox (potential entrants do not know the ordering
in which they have to make the entry decision and they do not have full knowl-
edge of the past history of the market) may explain the reputation phenomenon
as a sequential equilibrium outcome. Before moving on, a word of caution is
in order: perhaps unsurprisingly, I have not found a clear and sharp answer to
the problem. Rather, as the work of Kreps and Wilson, Milgrom and Roberts,
and Fudenberg and Maskin may suggest, it seems the existence of reputation
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equilibria is very sensitive to different specifications of the game. In particular,
here, given the uncertainty on the ordering of play, the quality of the information
about the history of the market held by potential entrants prior to their decisions
appears to be a determinant of whether or not there exists a sequential equilib-
rium with reputation. This is because the information plays a double role; it may
be seen by the monopolist as a way to build up his reputation, but at the same
time, it may also be used by a potential entrant to compute posterior probabilities
of where he is in the ordering.

Since the main goal of this note is to investigate the role of the perfect in-
formation assumptions in preventing the existence of sequential equilibria with
reputation, the multiplicity issue is not analyzed; I restrict myself to the partic-
ular class of sequential equilibria in which consistent beliefs possesses a good
deal of symmetry and behavioral strategies are always in pure actions. How-
ever, in contrast with Kreps and Wilson’s work, when reputation equilibria are
found, they are never unique since the constant strategy “enter” for every po-
tential entrant and the constant strategy “acquiescence” for the monopolist (the
unique subgame-perfect equilibrium of the perfect information game) are always
an equilibrium. Since the unique rational justification of a fight is the possible
effect that it may have on future potential entrants’ decisions, if nobody pays
attention to what has happened in the past (i.e., reputation has no role) the game
becomes a sequence of independent games whose overall equilibrium is nothing
else that the sequence of unique equilibria of every independent game. I do not
see this as a negative result; rather, any model pretending to explain the repu-
tation phenomenon as it is understood here (M is willing to incur losses today,
because in doing so, he may influence potential entrants’ actions) would have to
allow for nonreputation behavior to be an equilibrium of the model.

In the next section, various models are described, and results are presented
for different examples. Section 3 contains general comments and conclusions.
An Appendix at the end of the paper contains complete proofs, or their most
important arguments, of some of the results that are more illustrative in terms of
the techniques that one needs to use.

2. EXAMPLES AND RESULTS

In this section I analyze different versions of the Chain-Store game. Before
doing so we need a bit of notation.

The setN∪M represents the set of players whereM is the monopolist andN =
{1, 2, . . . , T} is the set of potential entrants (n ∈ N will denote a typical element
of N). Let Ht be the set of all possible histories of play up to periodt (1≤ t ≤ T−
1), i.e.,ht ∈ Ht is a sequence oft different elements(ht = {hτt }tτ=1), where each
elementhτt is drawn from the set{(Ôn)n∈N, (F̂n)n∈N, (Ân)n∈N}, wherehτt = Ôn
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means that at periodτ (1 ≤ τ ≤ t) the potential entrantn decided to stay out,
hτt = F̂n (resp.Ân) means thatn decided to enter and the monopolist answered
with fighting (resp. acquiescing). As a convention, setH0 = ∅. I also assume that
each entrant plays just once, that is, for anyZ, W ∈ {Ô, F̂, Â}, anyn ∈ N, and
anyν andτ such that 1≤ ν < τ ≤ t ≤ T : hνt = Zn ⇒ hτt 6= Wn. Therefore,
the set of all possible histories before a potential entrant decides whether to enter
or to stay out is

H = ∪T
t=1Ht−1.

Givenht ∈ Ht andhτ ∈ Hτ (t ≥ τ) we say thatht includeshτ (represented by
ht ⊃ hτ ) if hνt = hντ , ∀1≤ ν ≤ τ . Givenh ∈ H , let H |h = {h′ ∈ H : h′ ⊃ h}.

The first important modification of the Chain-Store Paradox is that potential
entrants do not know the order in which they have to make their decisions.
Assume that a prior distributionp on the set of all possible orderings ofN (i.e.,
with T ! points in its support) is given and it is common knowledge. From it, it
is possible to compute the probability that potential entrantn ∈ N has to make
his decision at periodt (1 ≤ t ≤ T) which will be denoted byp(n, t). I will
first consider the situation in which ateveryperiod, one and only one of the
potential entrants will decide on eitherI or O. Therefore, it is easily seen that
for every 1≤ t ≤ T and respectively, everyn ∈ N, p(·, t) andp(n, ·) are indeed
probability distributions, i.e.,

T∑
n=1

p(n, t) = 1 for every 1≤ t ≤ T

and

T∑
t=1

p(n, t) = 1 for everyn ∈ N.

Let us assume that the prior is such that for every 1≤ t ≤ T and everyn ∈ N,
p(n, t) > 0.

Before defining behavioral strategies in the game, notice that from the point
of view a potential entrant, knowing the full history of the game would tell him
where he is in the ordering. Therefore in order not to remove all the uncertainty
at this point, assume that there is a functionf : H → X, whereX is a given
set of signals. Then,f generates a partition onH as follows:h, h′ ∈ H be-
long to the same set of the partition ifff (h) = f (h′). Prior to his decision a
potential entrant only knowsx ∈ X (which is equivalent to knowing the set
{h ∈ H : f (h) = x}); hence, from the potential entrant’s point of view, the set of
periods at which he may be making his decision is denoted byUf (h) (i.e., a subset
of {1, 2, . . . , T}). To illustrate this, suppose there are only two possible signals,
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x andx′, depending, respectively, on whether or not the monopolist has failed
to fight; thus,f maps any history in which the monopolist has never acquiesced
into x and any history in which the monopolist has acquiesced at least once into
x′ (the partition ofH possesses only two elements). Then,Ux = {1, 2, . . . , T}
andUx′ = {2, 3, . . . , T}. Now, in general, a strategy forn ∈ N is a function
rn: X→ {I ,O}. Givenrn for every 1≤ n ≤ T , denoter = (r1, . . . , rT ). Given
h ∈ Ht let N(h) = {n ∈ N: ∀1 ≤ τ ≤ t, hτt 6= Wn for anyW ∈ {Ô, F̂, Â}}
be the subset of potential entrants who have not yet decided. A strategy for the
monopolist is a functionssuch that, for every 0≤ t < T , h ∈ Ht , andn ∈ N(h),
s(h, n) ∈ {A, F} specifies the monopolist’s action at periodt+1 after observing
a historyh and the potential entrantn entering att + 1.4 Then, given(s, r ), a
potential entrantn ∈ N may usex ∈ X, p(n, ·) and Bayes Rule to compute
(when possible) the posterior probabilityp(n, t | x) that he is thet th potential
entrant in the market.

Through this note I am going to use sequential equilibrium as the solution
concept because it captures the idea of Selten’s perfectness criterion in the context
of imperfect information and, moreover, it has been the equilibrium concept used
in the attempts to solve the paradox of the Chain Store by looking at it as a game
of incomplete information (see Kreps and Wilson, 1982a; Milgrom and Roberts,
1982). In our context, givenf : H → X andp, a sequential equilibrium consists
of a T + 1-tuple(s, r ) and a set of beliefsB = (B1, . . . , BT , BM) (for every
player and for each of his information sets, a probability distribution (“belief”)
on the set of nodes belonging to the information set) such that:

(i) for every player, and at each of his information sets, the moves prescribed
by his strategy are optimal (given his beliefs) for the remainder of the game
against everybody else’s future moves according to their strategies and,

(ii) there exists a sequence of completely mixed strategies converging to(s, r )
such that the generated sequence of conditional probability distributions over
the nodes at each information set converges to the set of beliefsB.5

The rest of the section is devoted to showing through examples that the exis-
tence of sequential equilibria with reputation is very sensitive to changes in the
information structuref : H → X.

The first three examples consider an information structure in which there exists
a sequential equilibrium with the property that the monopolist is willing to build
reputation.

EXAMPLE 1. Suppose potential entrants know before their entering decision
one and only one of the following three different things: (a) nobody has decided

4 Here it is assumed that the monopolist knows the full history of the game. In Example 2 and at the
end of Examples 3 and 5 this assumption is relaxed.

5 Kreps and Wilson (1982b) give a formal definition of it as well as its existence and relation with
Selten’s “trembling-hand” perfection. Condition (i) says that(s, r ) is sequentially rational given the
set of beliefsB, and condition (ii) says that given(s, r ) the set of beliefsB are consistent.
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to enter yet(Õ); (b) at least one agent decided to enter and faced anA response
(Ã); and (c) everybody who decided to enter was faced with anF response(F̃).
That is,X = {Õ, Ã, F̃} and f : H → X, where,

f (h) =



Õ if h ∈ H0 or h ∈ Ht is such that∀1≤ τ ≤ t, hτt = Ôn

for somen ∈ N
Ã if h ∈ Ht is such that∃1≤ τ ≤ t such thathτt = Ân

for somen ∈ N
F̃ if h ∈ Ht is such that∀1≤ τ ≤ t, hτt ∈ {(Ôn)n∈N, (F̂n)n∈N}

and∃τ such thathτt = F̂n for somen ∈ N.

In this case, if the monopolist has a reputation for being strong(F̃) and he plays
A just once, his reputation thereafter is a weak one(Ã), i.e., Ã is an absorbing
state and the only way to maintaiñF is to fight all the entrants.

Consider now the following strategies(s, r ):

rn(x) =
{

O if x ∈ {Õ, F̃}
I if x = Ã

∀n ∈ N

and

s(h, n) =


F if h ∈ Ht , wheret < T − 1 and

f (h) ∈ {Õ, F̃}
A if either h ∈ Ht , wheret < T − 1

and f (h) = Ã, or h ∈ HT−1

∀n ∈ N(h).6

RESULT 1.1. Suppose that−1+ a > 2c and p is such that for every n∈ N,

T−1∑
t=1

p(n, t)d+p(n, T)b < 0 and
T−1∑
t=2

(t−1)p(n, t)d+(T−1)p(n, T)b < 0.

(1)
Then, there exists a set of beliefs B such that((s, r ), B) is a sequential equilib-
rium.

Intuitively, condition (1) is sufficient for sequential rationality of potential
entrants given(s, r ) and the beliefsB. In particular, the first term of the condition
ensures that an entrant that observedÕ will prefer to stay out, and the second
term ensures that an entrant that observedF̃ will prefer to stay out. The weights
(t −1) and(T −1) come from the numerator of the Bayesian updating givenB.
For instance, ifd = −1 andb = 1, then anyp close “enough” to the uniform
distribution satisfies condition (1). The condition−1+ a > 2c is sufficient for

6 Notice that the monopolist is able to observe the potential entrants staying out of the market. In
Example 2 this assumption will be removed.
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sequential rationality of the monopolist given(s, r ) and the beliefsB. One set
of beliefs B that may do the job are the ones obtained (applying Bayes Rule)
from a sequence of completely mixed strategies converging to(s, r ) in which the
probability of mistake in every point of the sequence is the same for all players.
Unless otherwise noted, these are going to be the class of beliefs considered
hereafter.

To describe an equilibrium play, given(s, r ), defineat(s, r )as the actual action
of the potential entrantn at periodt according torn and the monopolist’s planned
action, contingent on entry, according tos. In this case, the equilibrium strate-
gies(s, r ) generate the following sequence of actions{at(s, r )}Tt=1: at(s, r ) =
(O, F), ∀1 ≤ t < T andaT (s, r ) = (O, A). Even though the monopolist is
willing to fight all the entrants but the last one, he never has to do it since all
potential entrants decide to stay out of the market.

EXAMPLE 2. Suppose now that in fact the monopolist can observe only po-
tential entrants deciding to enter, not the ones deciding to stay out. To describe
this information structure, considerh ∈ Ht and defineM(h) = {n ∈ N: ∀1 ≤
τ ≤ t, hτt 6= Wn for anyW ∈ {F̂, Â}} to be the set of potential entrants who
have not yet entered (either because they have already decided to stay out or
because they are going to consider their decision later on). Now consider the
following partition of the history spaceH . SinceM cannot distinguish between,
say, history(F̂3, F̂1, Ô2) and history(F̂3, Ô2, Ô4, F̂1), but knows which player
is facing now, letZ (with typical elementz) be the set consisting of either̃O
(nobody got in yet) or all sequences ofF̂n’s andÂn’s (with different subindexes)
of any length between 1 andT−1 (for instance,F̂n F̂m means that so far potential
entrantsn andm have decided to enter and both faced a fight as monopolist’s
response). DefineY = Z× N and let the signal-generating functiong: H → Y
be such that

(i) g(h0) = (z, n)⇒ z= Õ, and
(ii) ∀h ∈ Ht , g(h) = (z, n)⇒ if z 6= Õ thenn ∈ M(h),

where forh ∈ H , g(h) = (z, n) means that the monopolist knowsz abouth
and that, right now, the potential entrantn has decided to enter. In this case a
monopolist’s strategy is a function̂s: Y→ {F, A}. AssumeT = 5 and consider
the following strategies:

rn(x) =
{

O if x ∈ {Õ, F̃}
I if x = Ã

∀n ∈ N (as in the previous example)

and

ŝ(y) =
A if y = (z,m) is s.t. eitherz is a sequence of 4̂Fn’s or there is

at least oneÂn

F otherwise.
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RESULT 2.1. Suppose that a> 6c+ 5,7 and p is the uniform distribution.
Then there exists a set of beliefs B such that((ŝ, r ), B) is a sequential equilib-
rium.

The equilibrium play isat(ŝ, r ) = (O, F) for every 1≤ t ≤ 5.
The next example shows that to get reputation in equilibrium with the infor-

mation structuref : H → X of Examples 1 and 2, it is not crucial that the prior
distribution be close to the uniform one,8 and moreover that equilibrium play of
a reputation equilibrium might imply, at least with positive probability, that the
monopolist has to fight some potential entrant who decided to enter.

EXAMPLE 3. A game in which playeri will probably be the last.
Consider the information structuref : H → X of Example 1. Suppose that

T = 5 and thatp is such that there existsi ∈ N such that for everyj , k, l , n 6= i ,
p( jklni ) = 6/240 andp(i j lkn) = p( j ikln) = p( jkiln) = p( jklin) = 1/240.
Therefore,p(i, 5) = 72/120, andp(i, t) = 12/120 for every 1≤ t < 5; for
everyn in N, n 6= i , p(n, 5) = 12/120 andp(n, t) = 27/120 for every 1≤ t < 5
(i.e., it is likely that playeri will be the last potential entrant).

Now consider the following strategies(s, r ):

rn(x) =
{

O if x ∈ {Õ, F̃}
I if x = Ã

for n 6= i,

ri (x) = I for everyx ∈ X,

and,∀(h, n) such thatn ∈ N(h),

s(h, n) =


F if h ∈ Ht where eithert < 3 and f (h) ∈ {Õ, F̃},

or t = 3 and f (h) ∈ {Õ, F̃} and∃1≤ τ ≤ 4 s.t. playeri
made his decision at periodτ

A otherwise.9

That is, playeri always enters the market, playern 6= i enters the market only
if the monopolist has failed to fight, and the monopolist fights if previously he
has never failed to fight and eitherh has length smaller than 3 or if it has length
3 and playeri has already made his decision.

RESULT 3.1. Suppose that3d + 2b < 0, 2d + 3b > 0,10 and7a > 15c+ 8.
Then, there exists a set of beliefs B such that((s, r ), B) is a sequential equilib-
rium.

7 For examplea > 2 and−1< c < −1/2 satisfy this condition.
8 I am indebted to Bob Rosenthal for raising this question.
9 Notice again that the monopolist is able to observe the full history of the market, in particular the

identity of the player who stays out. This assumption will be removed later in the example.
10 For instance, ifb = −d (which is in the range of payoffs considered in Kreps and Wilson, 1982a).
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The equilibrium play is now the following probability distribution: with prob-
ability 1/10 each of the four different plays corresponding to the period in which
i makes his decision when his turn wask = 1, k = 2, k = 3, ork = 4, that is,

at(s, r ) =
(I , F) if t = k
(O, F) if t 6= k andt < 5.
(O, A) if t = 5,

and with probability 6/10 the play corresponding to playeri being the last:

at(s, r ) =
(O, F) if t = 1, 2, 3
(O, A) if t = 4
(I , A) if t = 5.

To remove the fact that the monopolist is able to know the full history of the
market, letf : H → Y be the same information structure of Example 2 (i.e., the
monopolist cannot discern whether a potential entrant already decided to stay
out of the market or has not made his decision yet) and consider(ŝ, r ) defined
by

rn(x) =
{

O if x ∈ {Õ, F̃}
I if x = Ã

∀n ∈ N

and

ŝ(y) =
A if y = (z,m) is such thatz is either a sequence of 4F̂n’s

or there is at least onêAn

F otherwise.

RESULT 3.2. Suppose that a> 26c+ 25. Then, there exists a set of beliefs
B such that((ŝ, r ), B) is a sequential equilibrium.

In this case the equilibrium play isat(ŝ, r ) = (O, F) for every 1≤ t ≤ 5.

EXAMPLE 4. Suppose that potential entrants are able to observe the complete
past history of the market except the staying out decisions (see the Introduction
for a justification of this information structure). Formally, assume thatf satisfies:
for every 1≤ t < T and everyn ∈ N if ht ⊃ ht−1 andht = (ht−1, Ôn), then
f (ht) = f (ht−1). Given this particular information structuref , one might ask,
does there exist any sequential equilibria with reputation? The next result answers
the question in a negative way even for more general information structuresf .
To state it, an additional definition is needed. A historyhT−1 of lengthT − 1
is called informative ifUf (hT−1) = {T}, and recursively, a historyht of length
0 ≤ t < T − 1 is called informative if,∀n ∈ N(ht), (ht , Ân) and (ht , F̂n)

are informative andUf (ht ) = {t + 1, . . . , T}. That is,ht is informative if f
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reveals that at leastt potential entrants have already made their decisions and,
moreover, this property is maintained for the historiesht followed by entries.
Using a backwards induction argument it is easy to show the following result.

RESULT 4.1. Suppose hτ (τ ≤ T − 1) is informative; then in any sequential
equilibrium:

(1) for every n∈ N, rn( f (h)) = I ∀h ∈ H | hτ , and
(2) s(h, n) = A ∀h ∈ H such that f(h) = f (h′), where h′ ∈ H | hτ and

n ∈ N(h).
[(2′) ŝ(y) = A ∀y ∈ Y s.t. ∀h ∈ g−1(y) is such that f(h) = f (h′), where

h′ ∈ H | hτ .]

COROLLARY. Suppose h0 = ∅ is informative; then there exists only one
sequential equilibrium strategy which is s(·, ·) = A[ŝ(·) = A] and rn(·) = I
∀n ∈ N.

It is easily seen that, for the information structure that we are interested in,h0

is informative and hence no reputation equilibria are possible. This is because in
the event of every potential entrant getting in and independently of monopolist’s
responses the last potential entrant knows with probability 1 that he is in fact
the last one, thereby producing the unraveling. Notice that the argument is in-
dependent of the prior distribution and of whether or not the monopolist is able
to observe potential entrants staying out of the market. For some histories, the
information structuref tells potential entrants too much about where they may
be in the ordering after computing the conditional probabilities given the history
and the hypothesized strategies.

So far we have considered only the situation in which sooner or later all players
in N must decide at some 1≤ t ≤ T whether or not to enter the market. The
next example considers an alternative specification and interpretation of the set
of potential entrants.

EXAMPLE 5. Suppose now thatN is seen as the set of firms which for some
reason (technological, product related, and so on) may potentially enter the
market, but perhaps some of them will never even consider the possibility of
doing so. In this example, then, the number of firms considering entry is unknown.
In this case,p is a probability distribution on the set of all possible orderings
of nonempty subsets ofN; therefore a point on the support ofp is an ordering
of a nonempty (not necessarily proper) subset ofN. Given p, it is possible to
computep(n, t) (as before, the probability that playern is going to make his
decision at periodt , but now p(n, ·) is no longer a probability distribution on
{1, 2, . . . , T}) andqt for 1 ≤ t ≤ T , whereqt means the probability thatt and
only t members ofN will in fact consider the possibility of entering the market.
Consider the information structuref : H → X of Example 1 and assume that the
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monopolist is able to observe the past history of the market (later in the example
this will be relaxed), but does not know how many potential entrants are in fact
considering whether or not to enter the market (as a maximum he knows that
there areT).

Consider now the following strategies(s, r ):

rn(x) =
{

O if x ∈ {Õ, F̃}
I if x = Ã

∀n ∈ N

and

s(h, n) =


F if h ∈ Ht , wheret < T − 1 and

f (h) ∈ {Õ, F̃}
A if either h ∈ Ht , wheret < T − 1

and f (h) = Ã, or h ∈ HT−1

∀n ∈ N(h).

RESULT 5.1. Suppose that T= 4, a > 3c+ 2, 19d + 9b < 0 and p is the
uniform distribution. Then, there exists a set of beliefs B such that((s, r ), B) is
a sequential equilibrium.

The equilibrium play generated by(s, r ) is the following probability distribu-
tion: with probabilityq1 = 1/16,a1(s, r ) = (O, F); with probabilityq2 = 3/16,
{aτ (s, r )}2τ=1, whereaτ (s, r ) = (O, F) for every 1≤ τ ≤ 2; with probability
q3 = 6/16, {aτ (s, r )}3τ=1, whereaτ (s, r ) = (O, F) for every 1≤ τ ≤ 3; and
with probability q4 = 6/16, {aτ (s, r )}4τ=1, whereaτ (s, r ) = (O, F) for every
1≤ τ < 4 anda4(s, r ) = (O, A).

To analyze the situation in which the monopolist does not know nature’s move,
let g: H → Y be the information structure defined in Example 2. Consider the
following strategies:

rn(x) =
{

O if x ∈ {Õ, F̃}
I if x = Ã

∀n ∈ N

and

ŝ(y) =


A if y = (z,m) is such that eitherz is a sequence
of T − 1 Fn’s or there is at least onêAn

F otherwise.

RESULT 5.2. Suppose that T= 4, a > 6c+ 5, and p is the uniform distri-
bution. Then, there exists a set of beliefs B such that((ŝ, r ), B) is a sequential
equilibrium.

The equilibrium play generated by(ŝ, r ) is the following probability distribu-
tion: with probabilityq1 = 1/16,a1(ŝ, r ) = (O, F); with probabilityq2 = 3/16,
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{aτ (ŝ, r )}2τ=1, whereaτ (ŝ, r ) = (O, F) for every 1≤ τ ≤ 2; with probability
q3 = 6/16, {aτ (ŝ, r )}3τ=1, whereaτ (ŝ, r ) = (O, F) for every 1≤ τ ≤ 3; and
with probability q4 = 6/16, {aτ (ŝ, r )}4τ=1, whereaτ (ŝ, r ) = (O, F) for every
1≤ τ ≤ 4.

3. COMMENTS AND CONCLUSIONS

Before proceeding, it may be useful to briefly summarize what we have learned
through the preceding examples. Examples 1, 2, and 3 have shown that if the
reputation the monopolist can build upon is of the type “all or nothing” then, in-
dependently of whether or not the monopolist is fully informed about the market
history, for some parameter configurations (payoffs andp) there exist sequential
equilibria with reputation whose equilibrium play may involve actual fighting
(that is, fighting may be a credible threat at equilibrium). In Example 4 it was
shown that if the information structure( f ) of the potential entrants is too infor-
mative then, independently of the prior distribution(p), there is no sequential
equilibria with reputation; that is, the unique perfect-equilibrium outcome is the
perfect equilibrium of the game with perfect information. Example 5 considered
the case in which, in addition to the information structure of Examples 1, 2, and
3, the number of potential entrants was uncertain; it was shown that for some pa-
rameter configurations, reputation equilibrium (with symmetric mistakes) does
exist.

I would like to emphasize the role that the information structuref plays as
a reputation index for the potential entrants. The amount of information thatf
carries about determines not only the variety of reputation levels the monopolist
may acquire but also the potential entrants’ perception about the monopolist’s
willingness to fight. However, as Example 4 shows, this may have a perverse
effect in the sense that a too broad set of possible reputations removes the uncer-
tainty about the ordering needed to generate reputation at equilibrium. The “all
or nothing” type of information structure in Example 1 does not have this effect
because after any history only one period may be ruled out at most, and thus it
leaves enough uncertainty in the environment. Additionally, the comparison of
both types of information suggests that the existence of reputation equilibria is
sensitive to the information structure in a very particular way: when reputation
is difficult to build up and maintain (and hence, it is easy to lose) reputation
equilibria seem more likely to exist. To corroborate this suggestion, consider the
following alternative information structure.

SupposeX = {Ō, Ā, F̄}, whereŌ means that nobody decided to enter,Ā
means that everybody who decided to enter was faced with anA response, and
F̄ means that at least one potential entrant decided to enter and faced anF
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response. Definef : H → X as follows:

f (h) =



Ō if h ∈ H0 or h ∈ Ht is such that∀1≤ τ ≤ t hτt = Ôn

for somen ∈ N
F̄ if h ∈ Ht is such that∃1≤ τ ≤ t such thathτt = F̂n

for somen ∈ N
Ā if h ∈ Ht is such that∀1≤ τ ≤ t hτt ∈ {(Ôn)n∈N, (Ân)n∈N}

and∃τ such thathτt = Ân for somen ∈ N.

That is, if the monopolist has a reputation of being strong(F̄) he never loses
it, i.e., F̄ is an absorbing state. (Notice the overall similarity and the symmetric
role of A andF with respect to the information structure of Example 1). In this
case there is no sequential equilibrium with reputation. The subgame-perfection
requirement together with the fact that reputation cannot be lost implies that
once the monopolist has a reputation he is not willing to fight any entrant and
hence, he is unable to avoid entry. Since obtaining reputation is costly, and not
valuable, he never fights.

To conclude this note, the difficulties of modeling reputation as an equilibrium
behavior in a game-theoretical context seem rather deep: reputation is a subtle
phenomenon very sensitive to different alternative modeling decisions. I have
focused on what I see as a more realistic description of which information entrants
have prior to their decisions in the Chain-Store Paradox. Finally, one may still see
the result of the equilibrium analysis of the Chain Store with perfect information
as paradoxical, and therefore one may be led to think that at least part of the
difficulty lies with more fundamental aspects of the modeling, i.e., the concepts
of strategy and equilibrium.

APPENDIX

This Appendix contains a detailed and complete proof of Result 1.1, and most
of the important arguments on the proofs of Results 2.1, 3.1, 5.1, and 5.2. The
proof of Result 3.2 is similar and therefore omitted. The proof of Result 4.1 is
also omitted since it consists of a standard backward induction argument.

RESULT 1.1. Suppose that−1+ a > 2c and p is such that for every n∈ N,

T−1∑
t=1

p(n, t)d+p(n, T)b < 0 and
T−1∑
t=2

(t−1)p(n, t)d+(T−1)p(n, T)b < 0.

Then, there exists a set of beliefs B such that((s, r ), B) is a sequential equilib-
rium.
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Proof. Consider the following set of beliefs for the entrants{Bn}n∈N , where
Bn is the triple ({p(n, t | Õ, (s, r ))}Tt=1, {p(n, t | F̃, (s, r ))}Tt=1, {p(n, t |
Ã, (s, r ))}Tt=1) defined by: for everyn ∈ N and every 1≤ t ≤ T ,

p(n, t | Õ, (s, r )) = p(n, t)

and

p(n, t | F̃, (s, r )) = p(n, t | Ã, (s, r )) = (t − 1)p(n, t)∑T
τ=2(τ − 1)p(n, τ )

.

Notice that, since potential entrants move only once and probabilities are
computed before they move,p(n, t | ·, (s, r )) could also be read asp(n, t | ·,
(s, r−n)). This abuse of language will be used repeatedly in what follows.

To check consistency, first note thatp(Õ | (n, t), (s, r )) = 1 and therefore,
by Bayes Rule

p(n, t | Õ, (s, r )) = p(Õ | (n, t), (s, r ))p(n, t)∑T
τ=1 p(Õ | (n, τ ), (s, r ))p(n, τ ) = p(n, t).

Given the strategies(s, r ), the information sets̃F andÃ for the entrants have zero
probability. Let{εm}m∈N be any sequence converging to zero with the property
that 0< εm < 1 for everym ∈ N. Define the following sequence of completely
mixed strategies: for everym≥ 1

r m
n (x) =


{

O with probability(1− εm)

I with probabilityεm

}
if x ∈ {Õ, F̃}{

I with probability(1− εm)

O with probabilityεm

}
if x = Ã

for everyn ∈ N,

and

sm(h, n) =



{
F with probability(1− εm)

A with probabilityεm

}
if h ∈ Ht , wheret < T − 1
and f (h) ∈ {Õ, F̃}{

A with probability(1− εm)

F with probabilityεm

} if either h ∈ Ht , where
t < T − 1 and f (h) = Ã,
or h ∈ HT−1

for everyn ∈ N(h). Notice that all players have the same probability of mistake
through the sequence. It is easy to check that{r m}∞m=1 → r and{sm}∞m=1 → s.
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We can now apply Bayes Rule along the sequence to the information setsF̃ and
Ã. Forn ∈ N and 2≤ t ≤ T ,

p(n, t | F̃, (sm, r m)) = p(F̃ | (n, t), (sm, r m))p(n, t)∑T
τ=2 p(F̃ | (n, τ ), (sm, r m))p(n, τ )

= [(t − 1)εm(1− εm)
t−1+ ◦(ε2

m, t)] p(n, t)∑T
τ=2[(τ − 1)εm(1− εm)τ−1+ ◦(ε2

m, τ )] p(n, τ )
, (2)

which converges to(t − 1)p(n, t)/
∑T

τ=2(τ − 1)p(n, τ ) as εm tends to zero,
where, in general,◦(εk

m, t) means a sum of terms multiplied byεm power a
number greater thank if t > 2, and zero ift = 2. Those terms come from
histories with more than two mistakes. Similarly,

p(n, t | Ã, (sm, r m))= p(Ã | (n, t), (sm, r m))p(n, t)∑T
τ=2 p(Ã | (n, τ ), (sm, r m))p(n, τ )

= {ε2
m[
∑t−2

τ=0(1− εm)
t−2+τ ]+◦(ε3

m, t)}p(n, t)∑T
τ=2{ε2

m[
∑τ−2

ν=0(1−εm)τ−2+ν ]+◦(ε3
m, τ )}p(n, τ )

, (3)

which converges to(t − 1)p(n, t)/
∑T

τ=2(τ − 1)p(n, τ ) as εm tends to zero.
Therefore, the set of beliefsB are consistent.

To check sequential rationality consider any entrantn ∈ N and suppose first
that the information set̃O is reached. Then, the expected payoff of entering,
given the strategies of the other players, is

Eπ(I | Õ, (s, r−n)) =
T−1∑
t=1

p(n, t | Õ, (s, r ))d + p(n, T | Õ, (s, r ))b

=
T−1∑
t=1

p(n, t)d + p(n, T)b. (4)

The expected payoff of staying out isEπ(O | Õ, (s, r−n)) = 0. Therefore,
since expression (4) is, by assumption, strictly negative, it follows thatEπ(O |
Õ, (s, r−n)) > Eπ(I | Õ, (s, r−n)).

Suppose that the information setF̃ is reached. Then

Eπ(I | F̃, (s, r−n)) =
T−1∑
t=2

p(n, t | F̃, (s, r−n))d + p(n, T)b

=
T−1∑
t=2

(t − 1)p(n, t)∑T
τ=2(τ − 1)p(n, τ )

d

+ (T − 1)p(n, T)∑T
τ=2(τ − 1)p(n, τ )

b (5)
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andEπ(O | F̃, (s, r−n)) = 0. Therefore, since expression (5) is, by assumption,
strictly negative, it follows thatEπ(O | F̃, (s, r−n)) > Eπ(I | F̃, (s, r−n)).

Suppose now that the information setÃ is reached. Then

Eπ(I | Ã, (s, r−n)) =
T∑

t=2

p(n, t | Ã, (s, r−n))b = b. (6)

Sinceb > 0 we have that (6) is strictly positive, and thusEπ(I | Ã, (s, r−n)) >

Eπ(O | Ã, (s, r−n)) = 0. Therefore, the entrants’ strategies satisfy sequential
rationality.

To check sequential rationality for the monopolist, suppose thath ∈ Ht is
such thatt < T − 1, f (h) ∈ {Õ, F̃}, andn ∈ N(h) just got in. Remember
that, in this case, the monopolist will avoid future entrants if and only if he
fights and also that, since he knows the period he is at, his information sets are
singletons. Therefore, the expected payoff of following the strategys, givenr ,
is Eπ(s | h, n, r ) = −1 + a(T − t − 1), which is greater than or equal to
Eπ(s′ | h, n, r ), the expected payoff of following any other strategys′, since
by assumption−1+ a > 2c. If h ∈ Ht is such thatt < T − 1, f (h) ∈ Ã and
n ∈ N(h) just got in, it follows thatEπ(s | h, n, r ) = c(T − t − 1) ≥ Eπ(s′ |
h, n, r ) for any other strategys′, since every entrant will enter and it is dominant
for the monopolist to accept every entrant. Finally, ifh ∈ HT−1 andn ∈ N(h)
just entered, it follows thatEπ(s | h, n, r ) = c ≥ Eπ(s′ | h, n, r ), because
entrantn is the last one ands(h) = A is dominant.

RESULT 2.1. Suppose that a> 6c+5,and p is the uniform distribution.Then
there exists a set of beliefs B such that((ŝ, r ), B) is a sequential equilibrium.

Proof. As in the proof of Result 1.1 we can construct a sequence of com-
pletely mixed strategies, withεm as a uniform mistake, converging to(ŝ, r ).

Consider first a potential entrantn ∈ {1, 2, . . . ,5} at the information set̃O
(or Â). Since, in the limit, the monopolist is going to fight (or to acquiesce) with
probability 1,n should stay out (or enter) independently of the limit beliefs (i.e.,
independently of the probability distribution on the set of nodes that constitute the
information setÕ (or Ã)). Suppose thatn is at the information set̃F . Notice that
the monopolist’s strategy is anonymous. Therefore, from the point of view ofn,
his information set can be partitioned into four relevant subsets according to how
many entrants the monopolist has already observed. Call themF̂n, F̂ F̂n, F̂ F̂ F̂n,
andF̂ F̂ F̂ F̂n (for instance,F̂n is the union of the family of nodes of the form̂Fi ,
for i 6= n). For everym ∈ N the probabilityp(F̃ | (ŝm, r m)) is strictly positive
and, sinceF̃ = F̂n ∪ F̂ F̂n ∪ F̂ F̂ F̂n ∪ F̂ F̂ F̂ F̂n, the conditional distribution on
F̃ has the property thatp(F̂n | F̃, (ŝm, r m)) converges to 1 asεm tends to zero.
Since the monopolist will fight with probability 1, sequential rationality forn
follows becauseEπ(I | F̃, (ŝm, r m)) = d < 0= Eπ(O | F̃, (ŝm, r m)).
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Consider now the monopolist. His relevant uncertainty, in this case, is on the
set of periods of time({1, 2, 3, 4, 5}).

If z has at least onêAn, to play A is a strictly dominant action, givenr ,
independently of the beliefs about the period he is at.

If z= Õ, for every 1≤ n ≤ 5 and 1≤ t ≤ 5, p(t | Õ, n, (ŝ, r )) = p(n, t) =
1/5 sincep is uniform. To check sequential rationality for this case, notice that
the expected payoff of following the strategyŝ, givenr , is

Eπ(ŝ | Õ, n, r ) =
5∑

t=1

p(t | Õ, n, (ŝ, r ))[−1+(5−t)a] = 1

5

5∑
t=1

[−1+(5−t)a]

and the maximum expected payoff of following any other strategyŝ′, given
r , is

∑5
t=1 p(t | Õ, n, (ŝ, r ))(6 − t)c if ŝ′(Õ, n) = A or Eπ(ŝ | Õ, n, r )

if ŝ′(Õ, n) = F . However,(1/5)
∑5

t=1[−1 + (5 − t)a] > (1/5)
∑5

t=1(6 −
t)c, sincea > 6c + 5 andc > −1. ThereforeEπ(ŝ | Õ, n, r ) ≥ Eπ(ŝ′ |
Õ, n, r ) for everyŝ′. Notice that the beliefs{p(t | Õ, n, (ŝ, r ))}5t=1 are computed
using the hypothesized strategies(ŝ, r ). Sequential rationality compares, at every
information set, different strategies(ŝ′) for the remainder of the game, but using
the beliefs produced by(ŝ, r ).

If z is a sequence of 4̂Fi ’s (i 6= n), thenp(t = 5 | F̂i F̂j F̂k F̂l , n, (ŝ, r )) = 1.
This implies that̂s is sequentially rational sincês(z, n) = A is a strictly dominant
action.

If z is a sequence of 3̂Fi ’s, for exampleF̂i F̂j F̂k, then

p(F̂i F̂j F̂k | t = 4, n, (ŝm, r m)) = ε4
m(1− εm)

3 p(i jknl )

p(n, 4)
= ε4

m(1− εm)
3 1/120

1/5

= ε4
m(1− εm)

3(1/24),

and

p(F̂i F̂j F̂k | t = 5, n, (ŝm, r m))

= ε4
m(1− εm)

4[ p(li jkn)+ p(i l jkn)+ p(i j lkn)+ p(i jkln)]

p(n, 5)

= ε4
m(1− εm)

4 4/120

1/5
= ε4

m(1− εm)
4(1/6).

Therefore, by Bayes Rule,

p(t = 4 | F̂i F̂j F̂k, n, (ŝ
m, r m))

= (1/24)ε4
m(1− εm)

3 p(n, 4)

(1/24)ε4
m(1− εm)3 p(n, 4)+ (1/6)ε4

m(1− εm)4 p(n, 5)
,
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which converges to 1/5 asεm tends to zero, and

p(t = 5 | F̂i F̂j F̂k, n, (ŝ
m, r m))

= (1/6)ε4
m(1− εm)

4 p(n, 5)

(1/24)ε4
m(1− εm)3 p(n, 4)+ (1/6)ε4

m(1− εm)4 p(n, 5)
,

which converges to 4/5 asεm tends to zero. To check optimality in this information
set, notice that

Eπ(ŝ | F̂i F̂j F̂k, n, r ) = p(t = 4 | F̂i F̂j F̂k, n, (ŝ, r ))(−1+ a)

+ p(t = 5 | F̂i F̂j F̂k, n, (ŝ, r ))(−1).

Substituting the probabilities by the limits 1/5 and 4/5, just obtained, it follows
that

Eπ(ŝ | F̂i F̂j F̂k, n, r ) = (1/5)(−1+ a)+ (4/5)(−1) = (1/5)a− 1.

The maximum payoff following any other strategyŝ′, givenr is

(1/5)2c+ (4/5)c = (6/5)c if ŝ′(F̂i F̂j F̂k, n) = A,

and

(1/5)a− 1 if ŝ′(F̂i F̂j F̂k, n) = F.

However, since by assumptiona > 6c+ 5 andc > −1, it follows that(1/5)a−
1 > (6/5)c, implying that Eπ(ŝ | F̂i F̂j F̂k, n, r ) ≥ Eπ(ŝ′ | F̂i F̂j F̂k, n, r ) for
everyŝ′.

For the other remaining cases, wherez is of the formF̂i F̂j or F̂i , the monopo-
list’s beliefs are obtained in a similar way and his sequential rationality follows
from arguments similar to the ones already made.

RESULT 3.1. Suppose that3d+2b < 0, 2d+3b > 0,and7a > 15c+8.Then,
there exists a set of beliefs B such that((s, r ), B) is a sequential equilibrium.

Proof. First, I will find a set of beliefs for the entrants. With it I will check
entrants’ sequential rationality. Therefore, let(s, r ) be given, and consider the
information setÕ. For everyn 6= i ,

p(Õ | (n, 1), (s, r )) = 1,

p(Õ | (n, 2), (s, r )) = p(i ≥ 3, (n, 2))

p(n, 2)

= 3!p(kni jl )+ 3!p(knj il )+ 3!p(knjli )

p(n, 2)



A NOTE ON REPUTATION 75

= 6(1/240)+ 6(1/240)+ 6(3/120)

27/120
= 8/9,

p(Õ | (n, 3), (s, r )) = p(i ≥ 4, (n, 3))

p(n, 3)
= 3!p(k jnil )+ 3!(k jnli )

p(n, 3)

= 6(1/240)+ 6(3/120)

27/120
= 7/9,

p(Õ | (n, 4), (s, r )) = p((i, 5), (n, 4))

p(n, 4)
= 3!p(k jlni )

p(n, 4)
= 6(3/120)

27/120
= 6/9,

and

p(Õ | (n, 5), (s, r )) = 0.

Therefore, by Bayes Rule,p((n, 1) | Õ, (s, r )) = 27/90,p((n, 2) | Õ, (s, r )) =
24/90, p((n, 3) | Õ, (s, r )) = 21/90, p((n, 4) | Õ, (s, r )) = 18/90, and
p((n, 5) | Õ, (s, r )) = 0. Furthermore,

Eπ(I | Õ, (s, r−n)) = (27/90)d + (24/90)d + (21/90)d + (18/90)b

= (72d + 18b)/90.

Since the assumptions 3d+2b < 0 andd < 0 imply 72d+18b < 0= Eπ(O |
Õ, (s, r−n)), it follows thatrn(Õ) = O is optimal for everyn 6= i .

For n = i , p((i, t) | Õ, (s, r )) = p(i, t) is satisfied for every 1≤ t ≤ 5.
Therefore,

Eπ(I | Õ, (s, r−i )) = (1/10)d + (1/10)d + (1/10)d + (1/10)d + (6/10)b

= (4d + 6b)/10.

Since the assumption 2d+3b > 0 implies 4d+6b > 0= Eπ(O | Õ, (s, r−i )),
it follows thatr i (Õ) = I is optimal for entranti .

Consider the information set̃F . For everyn 6= i

p(F̃ | (n, 2), (s, r )) = 3!p(ink jl )

p(n, 2)
= 6(1/240)

27/120
= 1/9,

p(F̃ | (n, 3), (s, r )) = 3!p(ikn jl )+ 3!p(kin jl )

p(n, 3)
= 2/9,

p(F̃ | (n, 4), (s, r )) = 3!p(ik jnl )+ 3!(ki jnl )+ 3!p(k j inl )

p(n, 4)
= 3/9,

and

p(F̃ | (n, 5), (s, r )) = 3!p(ik jln)+ 3!p(ki jln)+ 3!p(k j iln)+ 3!p(k jlin)

p(n, 5)
= 1.



76 JORDI MASŚO

Therefore, by Bayes Rule,p((n, 2) | F̃, (s, r )) = 1/10, p((n, 3) | F̃, (s, r )) =
2/10, p((n, 4) | F̃, (s, r )) = 3/10, andp((n, 5) | F̃, (s, r )) = 4/10. Thus,

Eπ(I | F̃, (s, r−n)) = (1/10)d+ (2, 10)d+ (3/10)d+ (4/10)b = (6d+4b)/10.

Since the assumption 3d+2b < 0 implies 6d+4b < 0= Eπ(O | F̃, (s, r−n)),
it follows thatrn(F̃) = O is optimal for everyn 6= i .

In the case ofn = i , the information setF̃ has zero probability. However,
using completely mixed strategies as in the previous proofs, the conditional
probabilities are

p(F̃ | (i, 2), (sm, r m)) = εm(1− εm),

p(F̃ | (i, 3), (sm, r m)) = 2εm(1− εm)
2,

p(F̃ | (i, 4), (sm, r m)) = 3εm(1− εm)
3,

and

p(F̃ | (i, 5), (sm, r m)) = 3εm(1− εm)
4+ ε2

m(1− εm)
3.

Therefore, using Bayes Rule,

p((i, 2) | F̃, (sm, r m))

= p(F̃ | (i, 2), (sm, r m))p(i, 2)∑5
t=2 p(F̃ | (i, t), (sm, r m))p(i, t)

= εm(1− εm)(1/10)

εm(1− εm)(1/10)+ 2εm(1− ε2
m)(1/10)+ 3εm(1− εm)

3(1/10)
+[3εm(1− εm)

4+ ε2
m(1− εm)

3](6/10)

,

which converges to 1/24 asεm tends to zero. Similarlyp((i, 3) | F̃, (sm, r m)),
p((i, 4) | F̃, (sm, r m)), and p((i, 5) | F̃, (sm, r m)) converge to 2/24, 3/24, and
18/24, respectively. Therefore,

Eπ(I | F̃, (s, r−i )) = (1/24)d+(2/24)d+(3/24)d+(18/24)b = (6d+18b)/24.

Since the assumptions 2d + 3b > 0 andb > 0 imply 6d + 18b > 0= Eπ(O |
F̃, (s, r−i )), it follows thatri (F̃) = I is optimal for entranti .

At the information setÃ, since the monopolist will accept any entrant, se-
quential rationality states (independently of the beliefs) that all entrants have to
enter. That is, for everyn and for any belief,

Eπ(I | Ã, (s, r−n)) = b > 0= Eπ(O | Ã, (s, r−n)).

Finally, I will obtain monopolist’s beliefs and check his sequential rationality.
Notice that for the monopolist what is crucial now is when playeri will make
his decision, becauser i (x) = I for everyx.
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Suppose thath ∈ H0 ( f (h) = Õ) and i is the entrant. Then,Eπ(s |
(i, 1), r ) = −1+ 4a and the maximum expected payoff of following any other
strategys′, givenr , is 5c if s′(h, i ) = A, and−1+ 4a if s′(h, i ) = F . Since the
assumptions 7a > 15c+ 8 andc > −1 imply −1+ 4a > 5c, it follows that
Eπ(s | (i, 1), r ) ≥ Eπ(s′ | (i, 1), r ) for everys′. Therefores(h, i ) = F satisfies
optimality. If i is not the entrant(i 6= 1), the relevant conditional probabilities
are p((i, 2) | (i 6= 1)) = 1

10/ 9
10 = 1/9, p((i, 3) | (i 6= 1)) = 1

10/ 9
10 = 1/9,

p((i, 4) | (i 6= 1)) = 1
10/ 9

10 = 1/9, andp((i, 5) | (i 6= 1)) = 6
10/ 9

10 = 6/9.
Therefore,

Eπ(s | (i 6= 1), r ) = (1/9)(−1− 1+ 3a)+ (1/9)(−1+ a− 1+ 2a)

+ (1/9)(−1+ 2a− 1+ a)+ (6/9)(−1+ 3a+ c)

= (1/3)(9a+ 2c− 4),

and the maximum expected payoff of following any other strategys′, givenr ,
is 5c if s′(h, n) = A, and(1/3)(9a+ 2c− 4) if s′(h, n) = F . The assumptions
7a > 15c+ 8 andc > −1 imply (1/3)(9a+ 2c− 4) > 5c. Therefore,Eπ(s |
(i 6= 1), r ) ≥ Eπ(s′ | (i 6= 1), r ) for every s′, which is the monopolist’s
sequential rationality at those information sets.

Suppose thath ∈ H1 and f (h) ∈ {Õ, F̃}. If i was the entrant att = 1
(respectively, is the entrant now),Eπ(s | (i = 1), n, r ) = −1+3a (respectively,
Eπ(s | (i = 2), r ) = −1+ 3a), which by assumption is strictly larger than
4c. Therefore, by a similar argument used in the previous case,s(h, n) = F
(respectively,s(h, i ) = F) is optimal. If i has not decided yet(i > 2), the
relevant conditional probabilities are

p((i, 3) | (i > 2)) = 12/120

96/120
= 1/8, p((i, 4) | (i > 2)) = 12/120

96/120
= 1/8,

and

p((i, 5) | (i > 2)) = 72/120

96/120
= 6/8.

Therefore,

Eπ(s | (i > 2), r ) = (1/8)(−1− 1+ 2a)+ (1/8)(−1+ a− 1+ a)

+ (6/8)(−1+ 2a+ c)

= (1/4)(8a+ 3c− 5),

and the maximum expected payoff of following any other strategys′, givenr ,
is 4c if s′(h, n) = A, and(1/4)(8a+ 3c− 5) if s′(h, n) = F . The assumptions
7a > 15c+ 8 andc > −1 imply (1/4)(8a+ 3c− 5) > 4c. Therefore,Eπ(s |
(i > 2), r ) ≥ Eπ(s′ | (i > 2), r ) for everys′.
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Suppose thath ∈ H2 and f (h) ∈ {Õ, F̃}. If i was the entrant att = 1 or at
t = 2 or is the entrant now(1 ≤ i ≤ 3), Eπ(s | (1 ≤ i ≤ 3), r ) = −1+ 2a,
which by assumption is strictly larger than 3c. Hence,s(h, n) = F(s(h, i ) = F)
is optimal. If i has not decided yet(i > 3), the relevant conditional probabilities
arep((i, 4) | (i > 3)) = 12

120/
84
120 = 1/7, andp((i, 5) | (i > 3)) = 72

120/
84
120 = 6/7.

Therefore,

Eπ(s | (i > 3), r ) = (1/7)(−1−1+a)+(6/7)(−1+a+c) = (1/7)(7a+6c−8),

and the maximum expected payoff of following any other strategys′, givenr ,
is 3c if s′(h, n) = A and(1/7)(7a+ 6c− 8) if s′(h, n) = F . The assumptions
7a > 15c+ 8 andc > −1 imply (1/7)(7a+ 6c− 8) > 3c. Therefore,Eπ(s |
(i > 3), r ) ≥ Eπ(s′ | (i > 3), r ) for everys′.

Suppose thath ∈ H3, f (h) ∈ {Õ, F̃} and playeri has already made his
decision(1 ≤ i ≤ 4). Then, Eπ(s | (1 ≤ i ≤ 4), r ) = −1 + a, which
by assumption is strictly larger than 2c. Hence,s(h, n) = F(s(h, i ) = F) is
optimal.

For all remainingh ∈ H , s(h, n) = A is optimal, since it is a dominant action
and the monopolist can not avoid any entrance by fighting.

RESULT 5.1. Suppose that T= 4, a > 3c+ 2, 19d + 9b < 0 and p is the
uniform distribution. Then, there exists a set of beliefs B such that((s, r ), B) is
a sequential equilibrium.

Proof. Consider a potential entrantn. The argument made in Result 1.1 can
be applied here, with the new interpretation of the probabilitiesp(n, t | ·, (s, r )),
since strategies are the same. Therefore, the beliefs found there will also satisfy
consistency here. Sincep is uniform, sequential rationality would follow, and
thus, at the information set̃O, it is satisfied that

3∑
t=1

p(n, t)d + p(n, 4)b = (16/64)d + (14/64)d + (12/64)d + (6/64)b

= (42/64)d + (6/64)b < 0,

because 19d + 9b < 0 implies 42d + 6b < 0. Moreover, at the information set
F̃ ,

3∑
t=2

(t − 1)p(n, t)d + 3p(n, 4)b = (14/64)d + 2(12/64)d + 3(6/64)b

= (38/64)d + (18/64)b < 0,

since 19d + 9b < 0. Finally, at the information set̃A, playern should enter
since, in the limit, the monopolist will accept the entrant.
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Consider now the monopolist. His relevant uncertainty, given(h, n), is which
period will be the last one. For 1≤ t ≤ 4 and(h, n) letqt(h, n) be the probability
that periodt will be the last one.

Suppose thath ∈ H0( f (h) = Õ) andn got in. Then,q1(h, n) = p(n)/[ p(n)+
p(n·)+ p(n · ·)+ p(n · ··)] = 1/16, and similarly,q2(h, n) = 3/16,q3(h, n) =
6/16, andq4(h, n) = 6/16. Therefore, sincef (h) = Õ, the expected payoff of
following strategys is

Eπ(s | h, n, r ) = (1/16)(−1)+ (3/16)(−1+ a)+ (6/16)(−1+ 2a)

+ (6/16)(−1+ 3a)

= (33/16)a− 1,

and the maximum expected payoff of following any other strategys′, given r
is (1/16)c+ (3/16)2c+ (6/16)3c+ (6/16)4c = (49/16)c if s′(h, n) = A and
(33/16)a − 1 if s′(h, n) = F . However, since by assumptiona > 3c+ 2 and
c > −1, (33/16)a − 1 > (49/16)c has to be satisfied, implying thatEπ(s |
h, n, r ) ≥ Eπ(s′ | h, n, r ) for everys′.

Suppose thath ∈ H1, f (h) ∈ {Õ, F̃}, andn ∈ N(h) got in. Let j be the
player that has already made his decision at period 1 (i.e., iff (h) = Õ then
h = Ôj , and if f (h) = F̃ thenh = F̂j ). It follows that

q2(h, n) = p( jn)

p( jn)+ p( jn·)+ p( jn · ·)
= 1/5,q3(h, n) = 2/5, andq4(h, n) = 2/5.

Therefore, sincef (h) ∈ {Õ, F̃}, the expected payoff of following the strategy
s is

Eπ(s | h, n, r ) = (1/5)(−1)+(2/5)(−1+a)+(2/5)(−1+2a) = −1+(6/5)a,

and the maximum expected payoff of following any other strategys′, given
r , is (1/5)c + (2/5)2c + (2/5)3c = (11/5)c if s′(h, n) = A, and(6/5)a − 1
if s′(h, n) = F . Nevertheless, since by assumptiona > 3c+ 2 andc > −1,
(6/5)a−1> (11/5)chas to be satisfied, implying thatEπ(s | h, n, r ) ≥ Eπ(s′ |
h, n, r ) for everys′.

Suppose thath ∈ H2, f (h) ∈ {Õ, F̃} andn ∈ N(h) got in. Let j andk be the
players that have already made their decisions at period 1 and 2, respectively,
(i.e., if f (h) = Õ thenh = Ôj Ôk and if f (h) = F̃ then eitherh = F̂j Ôk, Ôj F̂k

or F̂j F̂k). Then, fori 6= j, k, n, q3(h, n) = p( jkn)/[ p( jkn)+ p( jkni)] = 1/2,
andq4(h, n) = 1/2. Therefore, sincef (h) ∈ {Õ, F̃}, the expected payoff of
following strategys is

Eπ(s | h, n, r ) = (1/2)(−1)+ (1/2)(−1+ a) = −1+ (1/2)a,
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and the maximum expected payoff of following any other strategys′, givenr ,
is (1/2)c+ (1/2)2c = (3/2)c if s′(h, n) = A and(1/2)a − 1 if s′(h, n) = F .
However, since by hypothesisa > 3c+ 2, Eπ(s | h, n, r ) ≥ Eπ(s′ | h, n, r )
for everys′.

For the remainingh the monopolist cannot avoid future entries, and therefore,
to play A is sequentially rational.

RESULT 5.2. Suppose that T= 4, a > 6c+ 5, and p is the uniform distri-
bution. Then, there exists a set of beliefs B such that((ŝ, r ), B) is a sequential
equilibrium.

Proof. Arguments similar to the ones already used in Result 2.1 permit to
obtain a set of consistent beliefs for the potential entrants as well as to show that
r satisfies sequential rationality.

Consider the monopolist. His relevant uncertainty, given(z, n), is about how
many periods are left (including the current one). For 1≤ t ≤ 4 and(z, n) let
qt(z, n) be the probability that there aret periods left.

If z = Õ, for every 1≤ n ≤ 4 and every 1≤ t ≤ 4, the conditional
probabilities are,qt(Õ, n) = qt . Therefore, the expected payoff of following
strategyŝ is

Eπ(ŝ | z, n, r ) = (1/16)(−1)+ (3/16)(−1+ a)+ (6/16)(−1+ 2a)

+ (6/16)(−1+ 3a)

= (33/16)a− 1,

and the maximum expected payoff of following any other strategyŝ′, givenr ,
is (1/16)c+ (3/16)2c+ (6/16)3c+ (6/16)4c = (49/16)c if ŝ′(z, n) = A, and
(33/16)a − 1 if ŝ′(z, n) = F . Nevertheless, since by assumptiona > 6c+ 5,
(33/16)a − 1 > (49/16)c has to be satisfied, implying thatEπ(ŝ | z, n, r ) ≥
Eπ(ŝ′ | z, n, r ) for everyŝ′.

If z is a sequence of 2̂Fi ’s for exampleF̂i F̂j , then

q1(z, n | (ŝm, r m))

= ε3
m(1− εm)

2 p(i jn)+ ε3
m(1− εm)

3[ p(ki jn)+ p(ik jn)+ p(i jkn)]

ε3
m(1− εm)

2 p(i jn)+ ε3
m(1− εm)

3[ p(ki jn)+ p(ik jn)+ p(i jkn)]
+ε3

m(1− εm)
2 p(i jnk)

,

which converges to 4/5 asεm tends to zero. Therefore, the expected payoff of
following strategyŝ is

Eπ(ŝ | z, n, r ) = (4/5)(−1)+ (1/5)(−1+ a) = (1/5)a− 1,

and the maximum expected payoff of following any other strategyŝ′, givenr ,
is (4/5)c+ (1/5)2c = (6/5)c if ŝ′(z, n) = A, and(1/5)a − 1 if ŝ′(z, n) = F .
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But, since by assumptiona > 6c+ 5, (1/5)a− 1 > (6/5)c has to be satisfied,
implying thatEπ(ŝ | z, n, r ) ≥ Eπ(ŝ′ | z, n, r ) for everyŝ′.

If z= F̂i , then, withεm as common probability of mistake,q1(z, n | (ŝm, r m)),
q2(z, n | (ŝm, r m)) andq3(z, n | (ŝm, r m)) converge to 9/14, 4/14, and 1/14,
respectively. Therefore, the expected payoff of following strategyŝ is

Eπ(ŝ | z, n, r ) = (9/14)(−1)+(4/14)(−1+a)+(1/14)(−1+2a) = (6/14)a−1,

and the maximum expected payoff of following any other strategyŝ′, givenr , is
(9/14)c+ (4/14)2c+ (1/14)3c = (20/14)c if ŝ′(z, n) = A, and(6/14)a− 1 if
ŝ′(z, n) = F . Still, since by assumptiona > 6c+ 5, (6/14)a − 1 > (20/14)c
has to be satisfied, implying thatEπ(ŝ | z, n, r ) ≥ Eπ(ŝ′ | z, n, r ) for everyŝ′.

If z is a sequence of 3̂Fi ’s, thenq4(z, n) = 1. This implies that̂s is sequentially
rational sincês(z, n) = A is strictly dominant action.

Finally, if z has at least onêAi , to play A is also a strictly dominant action.
Therefore,̂s is sequentially rational.
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